应用案例编辑 播报缺陷检测系统应用的有金属表面、玻璃表面、纸张表面、电子元器件表面等对外观有严格要求又有明确指标的物品。
光学字符验证,简称OCV,是一种用于检查光学字符识别(OCR)字符串的打印或标记质量并确认其易辨识性的机器视觉软件工具 。该技术除了可以检查所呈现的字符串内容是否正确,还可以检查字符串的质量、对比度和清晰度,并对品质不合格的样品进行标记或剔除。中文名字符检测别名OCR常用名OCV检测常见的字符数字、英文字母、符号。
随时技术的发展,也出现了采用固定式或动态阈值分割方式进行检测的算法,但此方法同样存在缺陷:
1、镜头镜片区域结构纹理复杂,单一的阈值方法不能区分缺陷和产品本身结构;
2、镜头的端面、凸台区域,存在大量的纹理干扰,现有的阈值方法难以进行有效分割缺陷;
3、现有方法采用定焦采图的方式,获得的缺陷尺寸不准确,导致漏检率难以控制。
根据本发明的一个方面,在所述s11中,对所述端面和凸台按照如下公式的模板匹配获得r(x,y)值时得到两组值(x1,y1,phi1;x2,y2,phi2)分别代表定位的x坐标、y坐标和角度:
根据本发明的一个方面,所述步骤s14包括:所述步骤s14包括:按照imagemerge1=k1*image1+k2*image2+b对所述凸台图片和端面图片进行融合,再按照imagemerge2=a*imagemerge1+b获得终的融合图片;
其中imagemerge1表示初步融合图片,imagemerge2表示融合图片,k1代表image1的权重系数,k2代表image2的权重系数,a表示拉伸系数,b表示拉伸偏移;image1表示凸台图片,image2表示端面图片。
根据本发明的一个方面,所述步骤s2包括:
s21、利用层拍相机沿z轴方向对镜头内部进行层拍获得多张图片,并按照顺序等分为多组;
s22、对每一组图片进行缺陷分割和识别,将符合缺陷标准的所有缺陷放入到缺陷容器中;
s23、在所述缺陷容器中,通过比较缺陷中心距离偏差值将同一位置处的缺陷筛选出来;
s24、根据清晰度算法筛选出同一位置处表现为清晰的缺陷,按照此缺陷判断其尺寸是否为缺陷产品。